10,087 research outputs found

    Stochastic backgrounds of gravitational waves and spherical detectors

    Full text link
    The analysis of how a stochastic background of gravitational radiation interacts with a spherical detector is given in detail, which leads to explicit expressions for the system response functions, as well as for the cross-correlation matrix of different readout channels. It is shown that distinctive features of GW induced random detector excitations, relative to locally generated noise, are in practice insufficient to separate the signal from the noise by means of a single sphere, if prior knowledge on the GW spectral density is nil. The situation significantly improves when such previous knowledge is available, due to the omnidirectionality and multimode capacities of a spherical GW antenna.Comment: 19 page

    All-sky search algorithms for monochromatic signals in resonant bar GW detector data

    Get PDF
    In this paper we design and develop several filtering strategies for the analysis of data generated by a resonant bar Gravitational Wave (GW) antenna, with the goal to assess the presence (or absence) in them of long duration monochromatic GW signals, as well as their eventual amplitude and frequency, within the sensitivity band of the detector. Such signals are most likely generated in the fast rotation of slightly asymmetric spinning stars. We shall develop the practical procedures, together with the study of their statistical properties, which will provide us with useful information on each technique's performance. The selection of candidate events will then be established according to threshold-crossing probabilities, based on the Neyman-Pearson criterion. In particular, it will be shown that our approach, based on phase estimation, presents better signal-to-noise ratio than the most common one of pure spectral analysis.Comment: 17 pages, 10 PS figures, psbox, MNRAS TeX, submitted to MNRAS, revised 22-june-1998, full quality figures available compressed at ftp://fismat.ffn.ub.es/pub/papers/gr-qc/fig_9804026.zi

    Scalar QNMs for higher dimensional black holes surrounded by quintessence in Rastall gravity

    Full text link
    The spacetime solution for a black hole, surrounded by an exotic matter field, in Rastall gravity, is calculated in an arbitrary d-dimensional spacetime. After this, we calculate the scalar quasinormal modes of such solution, and study the shift on the modes caused by the modification of the theory of gravity, i.e., by the introduction of a new term due to Rastall. We conclude that the shift strongly depends on the kind of exotic field one is studying, but for a low density matter that supposedly pervades the universe, it is unlikely that Rastall gravity will cause any instability on the probe field.Comment: 6 figures, 11 page

    Evidence for Antipodal Hot Spots During X-ray Bursts From 4U 1636-536

    Get PDF
    The discovery of high-frequency brightness oscillations in thermonuclear X-ray bursts from several neutron-star low-mass X-ray binaries has important implications for the beat frequency model of kilohertz quasi-periodic brightness oscillations, the propagation of nuclear burning, the structure of the subsurface magnetic fields in neutron stars, and the equation of state of high-density matter. These implications depend crucially on whether the observed frequency is the stellar spin frequency or its first overtone. Here we report an analysis of five bursts from 4U 1636-536 which exhibit strong oscillations at approximately 580 Hz. We show that combining the data from the first 0.75 seconds of each of the five bursts yields a signal at 290 Hz that is significant at the 4×1054\times 10^{-5} level when the number of trials is taken into account. This strongly indicates that 290 Hz is the spin frequency of this neutron star and that 580 Hz is its first overtone, in agreement with other arguments about this source but in contrast to suggestions in the literature that 580 Hz is the true spin frequency. The method used here, which is an algorithm for combining time series data from the five bursts so that the phases of the 580 Hz oscillations are aligned, may be used in any source to search for weak oscillations that have frequencies related in a definite way to the frequency of a strong oscillation.Comment: 9 pages including one figure, uses aaspp4.sty, submitted to The Astrophysical Journal Letters on September 1

    Errors on the inverse problem solution for a noisy spherical gravitational wave antenna

    Get PDF
    A single spherical antenna is capable of measuring the direction and polarization of a gravitational wave. It is possible to solve the inverse problem using only linear algebra even in the presence of noise. The simplicity of this solution enables one to explore the error on the solution using standard techniques. In this paper we derive the error on the direction and polarization measurements of a gravitational wave. We show that the solid angle error and the uncertainty on the wave amplitude are direction independent. We also discuss the possibility of determining the polarization amplitudes with isotropic sensitivity for any given gravitational wave source.Comment: 13 pages, 4 figures, LaTeX2e, IOP style, submitted to CQ
    corecore